

CHALLENGES IN 999.9 GOLD ASSAYING BY CUPELLATION

Simone Marsan

MS 14103

CHALLENGES IN 999.9 GOLD ASSAYING BY CUPELLATION

Simone Marsan Head of Analytical Laboratory, LBMA Referee, ISO TC174 WG1 member ARGOR-HERAEUS SA 22.08.2024

23-25 August 2024 HILTON BANGALORE

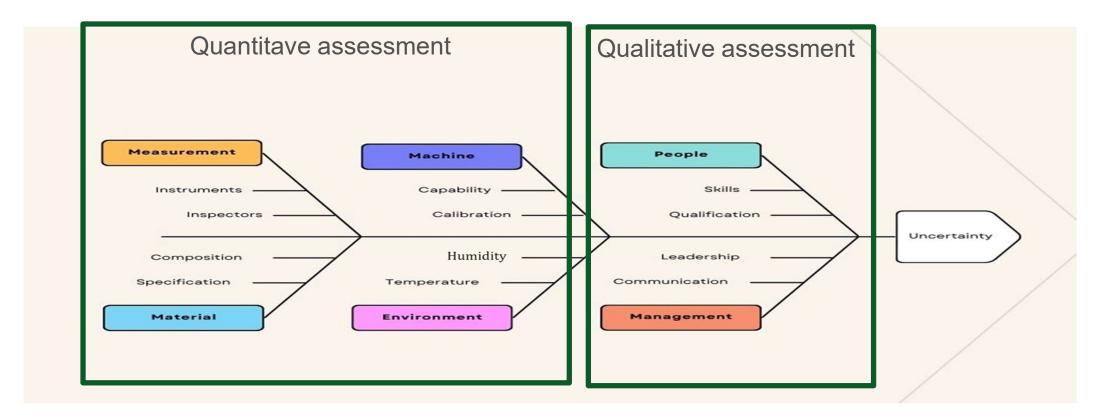
CHALLENGES IN 999.9 GOLD ASSAYING BY CUPELLATION

Standard	Analytical method	Au Range		Au Range		Au Range		Au Range		Au Range		Au Range		Au Range		Au Range		Au Range		Au Range		Au Range				Target Repeatability (2 replicates)	Repeatability on Au 999.9 ‰
		From (‰)	То (‰)																								
ASTM E1335-08:2017	Fire Assay	5	998,0	Au <995‰ : <mark>0.5 ‰</mark> 995.0‰ ≥ Au < 999.5‰: 0.16 ‰	NA																						
ISO 11426:2021	Fire Assay	100	999,5	Au <995‰ : <mark>0.5 ‰</mark> 995.0‰ ≥ Au < 999.5‰: 0.16 ‰	NA																						
ISO 15093:2020	ICP-OES	999,0		10% of the total impurities	0.1 ‰																						
ISO 18214:2024	Spark-OES	999,0		Au ≥999.9: <mark>0.01‰</mark> 999 < Au < 999.9: <mark>0.05 ‰</mark>	0.01 ‰																						
ISO 5724:2023	ICP-MS	999,99		25% of the total impurities	NA																						

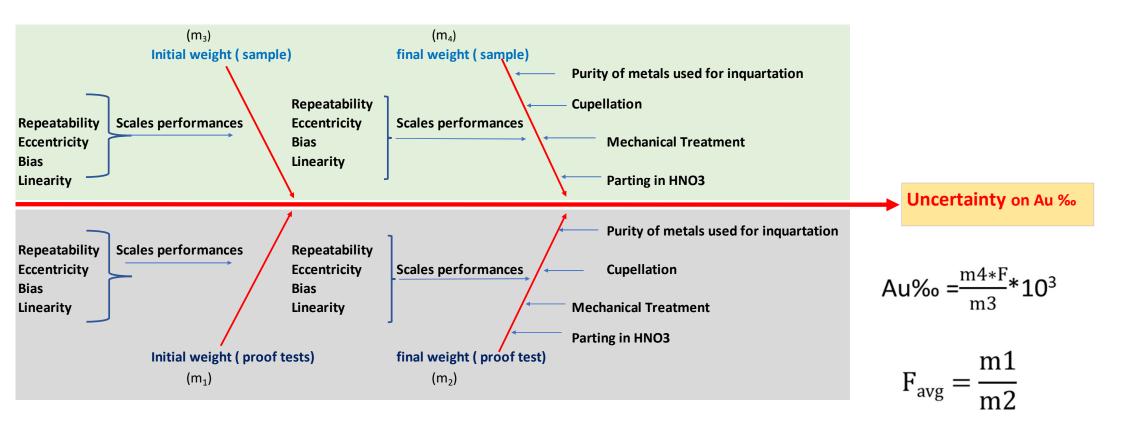
NA = Out of scope

CHALLENGES IN 999.9 GOLD ASSAYING BY CUPELLATION

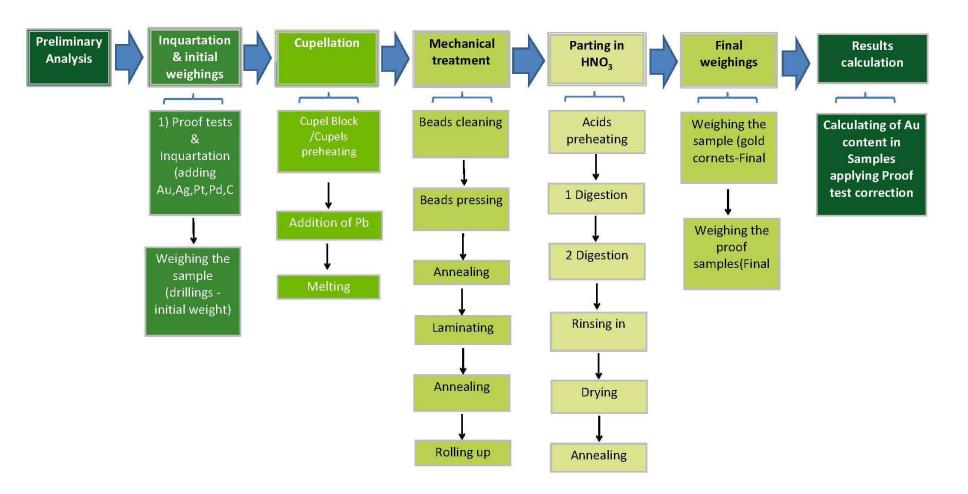
									Au ‰					
Normative	Method	(0‰)	5‰	100‰	500‰	900‰	950‰	998‰	998.5‰	999‰	999.5‰	999.9‰	999.99‰	(1000 ‰)
ASTM E1335-08 :2017	Fire Assay													
ISO 11426:2021	Fire Assay													
ISO 15093:2020	ICP-OES													
ISO 18214:2024	Spark-OES													
ISO 5724:2023	ICP-MS													


In some cases the range of use is defined as «preferably»

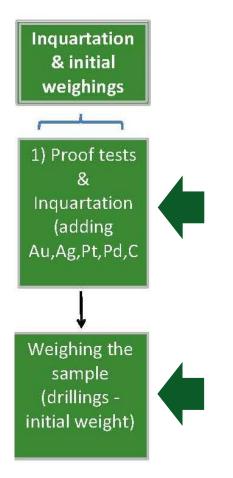
Can a small range extension in fire assay analysis be considered?


Yes but... uncertainty must be evaluated very carefully!

Overlapping area


QUANTITATIVE / QUALITATIVE ASSESSMENT

CHALLENGES IN 999.9 GOLD ASSAYING BY CUPELLATION

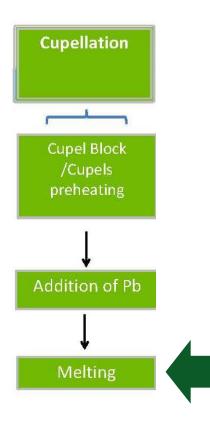


AU CONTENT DETERMINATION VIA FIRE ASSAY - GENERAL PROCESS

INQUARTATION

Inquartation

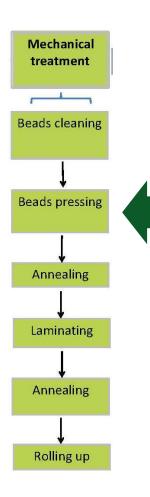
Au for proof samples min purity	999.99	‰
Ag for proof samples min purity	999.9	‰
Pb & Cu for proof samples min purity	999.9	‰


Scales

Accurancy : 0.001 mg Sample weight: 500 mg (double the standard weight) Environment: T & RH% under control

Check che performance of the scale stated on the certificate issued by the manufacturer!

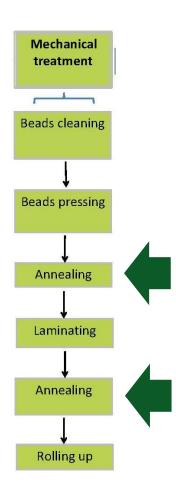
CUPELLATION



4 MgO blocks 3x3

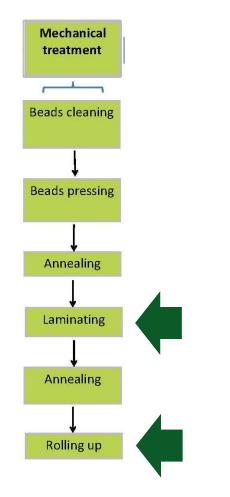
The temperature inside the oven should be as homogeneous as possible, small variations are corrected by proof tests.

The use of an MgO blocks increases the position-related repeatability.


MECHANICAL TREATMENT, 1

The bead resulting from cupellation must be cleaned and flattened before being rolled. The use of anvil & hammer is historical but the surface of the hammer must be absolutely smooth and clean. Using a press gives greater safety and repeatability

MECHANICAL TREATMENT, 2



The bunsen burner does not allow an effective temperature control as an annealing oven. Some areas of the flame are too hot , others too cold. In addition, samples must be handled one at a time. Samples may be damaged and have a loss of material then give results under what expected !

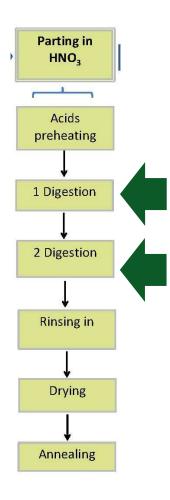
MECHANICAL TREATMENT, 3

Laminating

Gold beads should be prepared to a thickness of 0.12 to 0.15 mm and rolled fairly tightly but not too tightly so that HNO₃ solutions can act effectively.

Rolls type

«S» shape «B» s


«B» shape

«spiral» shape

All samples must have the same thickness ! All rolls must have the same shape !

PARTING IN HNO3

6 Kjeldahl flasks

6x6 Quartz basket

The use of a basket made of suitable material (quartz or platinum) instead of using traditional flasks could rationalize the HNO₃ separation operation.
It allows greater control of temperature distribution during the treatment.

UNCERTAINTY

Contributes to Uncertainty					
Id	Description	Uncertainty			
Α	Contribute due to the Repeatability of the lab	μΑ			
В	Contribute due to the Repeatability of F factor	μB			
	Contribute due to weighing uncertainty	μC			
D	Contribute due to purity of Au for proof tests (999.99 ‰)	μD			
E	Contributes due to purity of Ag for proof tests (999.9 ‰)	μE			

Accordingly to the law of propagation of the uncertainty, if the contributions are **not correlated** the variances add up with the formula:

$$Uc = \sqrt{\mu A^2 + \mu B^2 + \mu C^2 + \mu D^2 + \mu E^2}$$

Where Uc is the Combined Standard Uncertainty

Starting from Uc we can calculate the **expanded uncertainty U** taking into account a confindence level:

U=K*Uc

- K=2 (95% of confidence)
- K=3 (99 % of confidence)

HOW TO REDUCE THE UNCERTAINTY ?

1) Reduce the uncertainty related to statistical & systematic errors :

Statistical errors : related to the standard deviations of the method → Improve the repeatability of the process

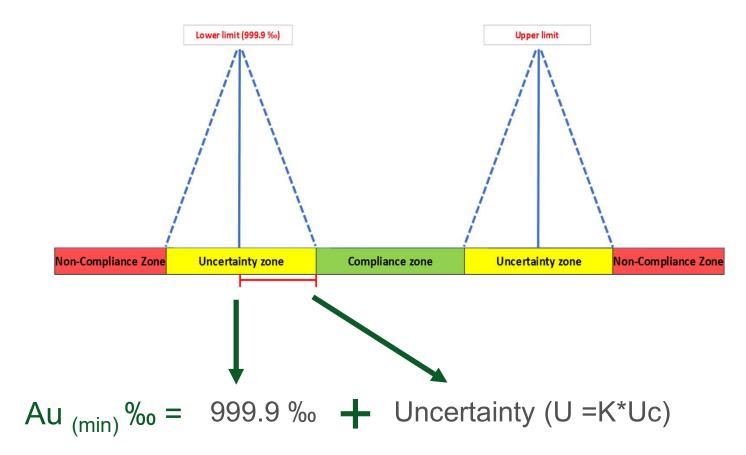
Systematic errors: related to an inaccurancy of the system → Check with Proficiency Testing and apply corrective actions

2) Increase the number of replicates

The standard uncertainty of mean value **Un** of **n** replicates is expressed this way:

Un = s / \sqrt{n}

Where **s** is the standard deviation of the method


HOW MANY REPLICATES FOR SAMPLES AND PROOF TESTS?

e.g for a standard deviation of 0.07‰ (considering the same for samples and proof tests):

 $Uc = \sqrt{\mu A^2 + \mu B^2}$

Sample replicates (A)	Proof Tests replicates (B)	Uc ‰
2	1	0.09
4	2	0.06
8	4	0.04

ISO APPROACH

ISO Approach

Measurement uncertainty must be covered by the party assuming the duty of proving conformity or non-conformity and consequently carries out the measurement

Uncertainty is a cost!

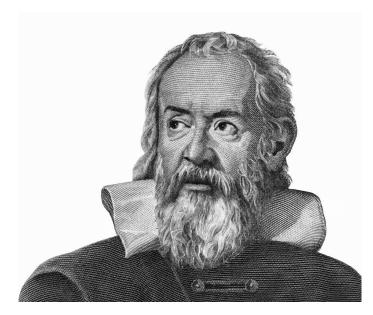
CONCLUSIONS

 Fire assay analysis on Au 999.9 ‰ can be considered as an alternative to spectrometric methods but only after careful assessment of the measurement uncertainty

2) An **increase in the number of standard repetitions** (e.g. ISO 11426, ASTM E1335-08) must be taken into consideration

References & Bibliography

<u>www.ISO.org</u> International Organization for Standardization <u>www.ASTM.org</u> American Society for Testing and Materials International <u>www.eurachem.org</u> Eurachem/Citac Guide 2012 <u>www.LBMA.org.uk</u> Assaying & Refining Conference 2013-2015 Dr A .Ruffoni


Thank you for your attention

"Count what is countable, measure what is measurable and make measurable what is not"

Galileo Galilei (1564-1642)

